Illinois Alliance for Clean Transportation: Green Drives Conference and Expo

HOW TO MEASURE VEHICLE EMISSIONS

ANDY BURNHAM

Principal Environmental Scientist <u>aburnham@anl.gov</u>

May 18, 2023

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

OUTLINE OF PRESENTATION

Life-Cycle Analysis Introduction

- GREET
- GHG
- Air pollutants

AFLEET Demo

- Introduction
- TCO demo

Life-Cycle Analysis (LCA) Introduction

3

GREET LCA MODELING AT ARGONNE

- System boundary
- Metrics
 - Energy
 - Water use
 - **Emissions**

 - <u>GHG</u>: CO₂, CH₄, N₂O
 Air pollutants: VOC, CO, <u>NOx</u>, PM₁₀, <u>PM_{2.5}</u>, SOx
- Data availability & representation

VEHICLE CYCLE (GREET 2 Series)

LCA FOR GHG AND AIR POLLUTANT ANALYSIS

GEOGRAPHIC IMPACT OF GRID MIX

TEMPORAL IMPACT OF GRID MIX

U.S. 2021 vs 2050 (EIA AEO BAU projected)

- GHG intensity
 (g GHG/kWh at the plug)
 - 466 vs 303
- Generation mix
 - Gas 36% vs 34%
 - Coal 24% vs 11%
 - Nuclear 20% vs 19%
 - Renewable 19% vs 36%
- U.S. set goal of 100% carbon pollution-free electricity by 2035

TEMPORAL IMPACT OF VEHICLE EFFICIENCY

Current (2020)

Current Conditions (Small SUV)

TEMPORAL IMPACT OF VEHICLE EFFICIENCY

Current (2020) and Future (2030-2035)

Powertrain Improvements (Small SUV)

VEHICLE PRODUCTION IMPORTANCE INCREASES W/ IMPROVED FUEL EFFICIENCY Current (2020) and Future (2030-2035)

Vehicle Cycle Contributions (Small SUV)

LOW CARBON FUELS ARE BEING EXPLORED FOR ALL POWERTRAINS

Current (2020) and Future (2030-2035)

Decarbonization Potential through Alternative Energy Pathways

LOW CARBON FUELS ARE BEING EXPLORED FOR ALL POWERTRAINS

Current (2020) and Future (2030-2035)

Decarbonization Potential through Alternative Energy Pathways

LCA OF SCHOOL BUS NO_x EMISSIONS

LCA OF SCHOOL BUS $PM_{2.5}$ EMISSIONS

- y 1777 7 7 7

AFLEET DEMO

Argonne

AFLEET TOOL

Examines light-duty, heavy-duty, & off-road vehicle:

- Petroleum use
- GHGs
- Air pollutants
- Cost of ownership
- Contains 18 fuel/vehicle technologies
 - Conventional
 - Hybrids
 - Plug-in electrics
 - Alternative fuels: CNG, LNG, LPG, H₂, ethanol, biodiesel, renewable diesel

• AFLEET Spreadsheet and Online; HDVEC: <u>afleet.es.anl.gov</u>

- New version coming soon
 - EV rate and charging TCO calculators
 - Online TCO and off-road payback calculators

AFLEET ONLINE TUTORIAL - START PAGE

About, Tool Selection

AFLEET Online

AFLEET ONLINE

The Department of Energy has enlisted the expertise at Argonne to develop the Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool for Clean Cities Coalition stakeholders. This online version of AFLEET compares new alternative fuel vehicles to gasoline (light-duty) and diesel (heavy-duty) vehicles.

Below are the calculators implemented by the online version from the AFLEET Tool 2020 spreadsheet. Select one of the options below to get started:

SELECT A TOOL TO GET STARTED

PAYBACK ON-ROAD CALCULATOR

- Annual petroleum use
- Annual greenhouse gas emissions
- · Annual air pollutant emissions
- Simple payback on-road

PAYBACK OFF-ROAD CALCULATOR

- Annual petroleum use
- Annual greenhouse gas emissions
- Annual air pollutant emissions
- Simple payback off-road

TCO CALCULATOR

- Lifetime petroleum use
- Lifetime greenhouse gas emissions
- · Lifetime air pollutant emissions
- Total cost of ownership

For any questions please contact: afleet@anl.gov

Copyright Statement

- 1st step: select vehicle type
 - LDV (compare to gasoline)
 - HDV (compare to diesel)

- 2nd step:
 - state
 - # of vehicles
 - mileage
 - years of ownership
- 3rd step: select alternative fuels/powertrains
- 4th step:
 - fuel economy
 - purchase price
 - maintenance

Veh	icle Info Fue	l Prices	Other Costs	Fuel Options	
	Vehicl	е Туре	School Bu	IS	~
		State	Illinois		~
	Q	uantity	1	vehicle(s)	
	Vehicle M	lileage	15,000 mi/year		
Planned Ownership		15 years			
Powe	ertrains to Comp	are			
	Powertrain	Fuel (MPD	Economy GE)	Purchase Price (\$/vehicle)	Maintenance (\$/mi)
	Gasoline		6.81		
~	Diesel		8.17	\$100,000	\$0.9
~	EV		23.96	\$300,000	\$0.5
	FCV				
	Diesel HEV				
	Diesel HHV		10.54		
~	B20		8.17	\$100,000	\$0.9
	B100		8.17		
	RD20		8.17		
	RD100		8.17		
	E85	6.81			
~	LPG		6.81	\$108,000	\$0.6
•	CNG		6.94	\$130,000	\$0.9
	LNG	6,94			
	LNG/D		7.76		

• 5th step: fuel prices

AFLEET Online			
Vehicle Info Fuel Prices	Other Costs	Fuel Options	
Fuel Station Type O Public	O Private		
Fuel Prices			
Diesel	\$1.95	\$/gal	
Electricity	\$0.13	\$/kWh	
B20	\$2.48	\$/gal	
Propane	\$1.49	\$/gal	
CNG	\$1.78	\$/CNG GGE	
Diesel Exhaust Fluid	\$2.80	\$/gal	

- 6th step:
 - fuel production sources
 - petroleum use, GHGs, and air pollutants options

ehicle Info	Fuel Prices	Other Costs Fu	el Options	
Fuel Produc	tion Sources			
Biodiesel Feedstock		Soy	¢	
CNG Feedsto	ock	North American N	G	\$
North Ameri Feedstock S	can NG ource	Conventional 66%	Shale 34%	
LPG Feedstock Source		NG 69%	Petroleum 31%	
Electricity		Average U.S. Mix		\$
View Electri	icity Source Ma	p		
Calculation	Options			
GHG Calcula	tions			
Well-to-Wh	eels Petroleum	Use and GHGs & Vehi	cle Operation Air Polluta	ants 🗘

 7th step: view TCO, GHG, petroleum, air pollutant results

 7th step: view TCO, GHG, petroleum, air pollutant results

• 8th step: export and view results

1	AFLEET TCO Export					
2				School Bus		
2						
4						
5	Powertrain	Fuel Economy	Purchase Price	Maintenance Cost	Comparison Quantity	Vehicle Mileage
6	Diesel	8.2	\$100,000	\$0.930	1	15,000
7	EV	24.0	\$300,000	\$0.560		
8	B20	8.2	\$100,000	\$0.930		
9	LPG	6.8	\$108,000	\$0.610		
10	CNG	6.9	\$130,000	\$0.930		
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
	Powertrains	Other Costs	Fuel Prices Fuel Opti	ions Results (+)	l	

Argonne National Laboratory's work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

This work has been supported and assisted by: Margaret Smith: U.S. DOE Marcy Rood: Argonne Joann Zhou: Argonne Eric Pfister, Noah Song, David Sandoval, Arijus Trakymas, Lisette Ruano, Andy Ayers

www.anl.gov

CRADLE-TO-GRAVE LCA OF U.S. LIGHT-DUTY VEHICLE-FUEL PATHWAYS

	CURRENT TECHNOLOGY CASES	FUTURE TECHNOLOGY Cases	
Gasoline (E10)	II S average crude mix	Bio-renewable gasoline (pyrolysis)	
	(blended with 10% corn ethanol)	E-fuels (Nuclear electricity + CO2)	
		E-fuels (Renewable electricity + CO2)	
		Bio-renewable diesel (pyrolysis)	
Diesel		Hydroprocessed renewable diesel (HRD) from soybeans	
	U.S. average crude mix	20% Fatty Acid Methyl Ester (FAME) drop-in bio-based diesel (B20) from	
		Gas-to-liquid Fischer-Tropsch Diesel (GTL FTD)	
		E-fuels (Nuclear electricity + CO2)	
		E-fuels (Renewable electricity + CO2)	
CNG	U.S. average of conventional and shale gas mix	Renewable natural gas (NG) (from landfill gas)	
Ethanol (E85)	85% corn ethanol	85% Cellulosic from corn stover	
	(blended with 15% petroleum gasoline blendstock)	(blended with 15% petroleum gasoline blendstock)	
		Low temperature electrolysis from wind/solar	
Hydrogen	Centralized production from Steam Methane	High-temperature electrolysis using nuclear energy	
nyarogon	Reforming (SMR)	Natural gas SMR with Carbon Capture and Storage (CCS)	
		Natural gas Advanced Combined Cycle (ACC)	
Floctricity	EIA-AEO U.S. average electricity generation mix	Natural gas ACC with CCS	
Electricity	in 2020	Wind	
		Solar photovoltaic (PV)	
		(Kelly et al., 2022) <u>https://greet.es.anl.gov/publication-c2g_lca_us_ldv</u> AISO	